
Clear["Global`*⋆"]

1 - 6 Mixing problems.

1. Find out, without calculation, whether doubling the flow rate in example 1 has the 
same effect as halfing the tank sizes. (Give a reason.)

I see the answer to this problem is yes, which surprised me.

3. Derive the eigenvectors in example 1 without consulting this book.

A =  -−0.02 0.02
0.02 -−0.02



{{-−0.02, 0.02}, {0.02, -−0.02}}

Eigensystem[A]

{{-−0.04, 0.}, {{0.707107, -−0.707107}, {0.707107, 0.707107}}}

As there is no text answer to this problem, I can’t determine whether my guess is right or 
wrong.

5. If you extend example 1, p. 130 by a tank T3 of the same size as the others, and con-
nected to T2 by two tubes with flow rates as between T1 and T2, what system of ODEs 
will you get?

The example in the text is basically the diagram below, except only the first two tanks. 
Working first with the example conditions,
ClearAll["Global`*⋆"]

eqn1 = y1'[x] ⩵ -−0.02 y1[x] + 0.02 y2[x];
eqn2 = y2'[x] ⩵ 0.02 y1[x] -− 0.02 y2[x];
ics = {y1[0] ⩵ 0, y2[0] ⩵ 150};

The first DSolve will be to get a general solution of the system.
sol = DSolve[{eqn1, eqn2}, {y1, y2}, x]

y1 → Function{x},

0.5 ⅇ-−0.04 x 1. + 1. ⅇ0.04 x C[1] + 0.5 ⅇ-−0.04 x -−1. + 1. ⅇ0.04 x C[2],

y2 → Function{x}, 0.5 ⅇ-−0.04 x -−1. + 1. ⅇ0.04 x C[1] +

0.5 ⅇ-−0.04 x 1. + 1. ⅇ0.04 x C[2]

The solution checks.

ChopSimplify[eqn1 /∕. sol], 10-−17

{True}



ChopSimplify[eqn2 /∕. sol], 10-−17

{True}

Still working with the text example, in which there are two tanks, I can solve for the initial 
conditions, in which all 150 pounds of fertilizer starts out in tank T2. 
sol2 = DSolve[{eqn1, eqn2, ics}, {y1, y2}, x]

y1 → Function{x}, 75. ⅇ-−0.04 x -−1. + 1. ⅇ0.04 x,

y2 → Function{x}, 75. ⅇ-−0.04 x 1. + 1. ⅇ0.04 x

The question posed by the example is the time required for the first tank, T1, to accumulate 
at least half the fertilizer that is in tank T2.  That will happen when T1 has 50 pounds and T2 
has 100 pounds.

Solve74.99999999999999` ⅇ-−0.04` x -−1.` + 1.` ⅇ0.04` x ⩵ 50, x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. !

{{x → 27.4653}}

Solve75.` ⅇ-−0.04` x 1.` + 1.` ⅇ0.04` x ⩵ 100, x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. !

{{x → 27.4653}}

The above answers match the text example pretty well. (The example gives 27.5 minutes as 
the time, and displays it on a graph, figure 78, p. 131.) Now, what will the system of ODEs 
look like with the addition of tank T3? It is still just the circulation in and out, for each tank. 
Tank T1 remains unchanged, its circulation limited to T2. The circulation in tank T2 will 
double, since it will have 4 gpm in and 4 gpm out. The outflow can be described as 2 y2.  
And there will be 2 gpm going to T1, as well as 2 gpm going to T3. 

So altogether the equation for T2  will be y2 ' = 0.02 (y1 -− 2 y2 + y3). As for T3, it will be just 
like T1, except on the other side of T2, thus y3 ' = 0.02 (y2 -− y3). This identification of the 
system of equations is all the problem description asks for.

 But let me work it out. Suppose the 150 lbs of fertilzer starts out in T2 as before, and it is 
desired to know when T1 and T2 have accumulated 25 pounds of fertilizer (which I think 
should be at the same time.)
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 But let me work it out. Suppose the 150 lbs of fertilzer starts out in T2 as before, and it is 
desired to know when T1 and T2 have accumulated 25 pounds of fertilizer (which I think 
should be at the same time.)

eqn3 = y1'[x] ⩵ -−0.02 y1[x] + 0.02 y2[x];
eqn4 = y2'[x] ⩵ 0.02 y1[x] -− 2 (0.02 y2[x]) + 0.02 y3[x];
eqn5 = y3'[x] == -−0.02 y3[x] + 0.02 y2[x];

Mathematica is capable of solving the 3-equation problem, and the answer checks.
sol3 = DSolve[{eqn3, eqn4, eqn5}, {y1, y2, y3}, x];

ChopSimplify[eqn3 /∕. sol3], 10-−17

{True}

ChopSimplify[eqn4 /∕. sol3], 10-−17

{True}

ChopSimplify[eqn5 /∕. sol3], 10-−17

{True}

In the revised set of initial conditions, the 150 pounds of fertilizer is still deposited in T2.
ics2 = {y1[0] ⩵ 0, y2[0] ⩵ 150, y3[0] ⩵ 0};

sol4 = DSolve[{eqn3, eqn4, eqn5, ics2}, {y1, y2, y3}, x]

y1 → Function{x}, 50. ⅇ-−0.08 x -−1. ⅇ0.02 x + 6.73463 × 10-−18 ⅇ0.06 x + 1. ⅇ0.08 x,

y2 → Function{x}, 50. ⅇ-−0.08 x 2. ⅇ0.02 x -− 7.47694 × 10-−34 ⅇ0.06 x + 1. ⅇ0.08 x,
y3 →
Function{x}, 50. ⅇ-−0.08 x -−1. ⅇ0.02 x -− 6.73463 × 10-−18 ⅇ0.06 x + 1. ⅇ0.08 x

And the time in minutes to get half of the fertilizer into the two auxillary tanks is sought.

Solve50.00000000000001` ⅇ-−0.08000000000000002` x

-−1.` ⅇ0.020000000000000004` x + 6.7346319387675736`*⋆^-−18 ⅇ0.06000000000000001` x +

1.` ⅇ0.08000000000000002` x ⩵ 25, x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. !

{{x → 11.5525}}

Solve50.00000000000002` ⅇ-−0.08000000000000002` x

1.999999999999999` ⅇ0.020000000000000004` x -− 7.476943440795785`*⋆^-−34

ⅇ0.06000000000000001` x + 1.` ⅇ0.08000000000000002` x ⩵ 100, x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. !

{{x → 11.5525}}
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Solve50.00000000000002` ⅇ-−0.08000000000000002` x

-−1.` ⅇ0.020000000000000004` x -− 6.734631938767571`*⋆^-−18 ⅇ0.06000000000000001` x +

1.` ⅇ0.08000000000000002` x ⩵ 25, x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. !

{{x → 11.5525}}

The above cells show that with the circulation doubled, the time to distribute one third of 
the fertilizer out of tank T2 is much reduced, in fact by

1 -− 11.552453009332412`  27.465307216702744`

0.57938

more than 50 percent.

7 - 9 Electrical network
In example 2, find the currents:

7. If the initial currents are 0 A and -3 A (minus meaning the I2(0) flows against the 
direction of the arrow).

ClearAll["Global`*⋆"]

In example 2 the applicable matrix is found as

 -−4 4
-−1.6 1.2



{{-−4, 4}, {-−1.6, 1.2}}

Mathematica , in calculating eigenvectors, always normalizes any which have any entries, in 
the parent matrix, which are floats. In this case I can pull the following into agreement with 
the text (which does not normalize the eigenvectors here) by rationalizing.
Rationalize[-−1.6]

-−
8

5

Rationalize[1.2]
6

5

A =
-−4 4
-− 8

5
6
5

{-−4, 4}, -−
8

5
,
6

5


For which the applicable eigenvalues and eigenvectors can be found as
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{vals, vecs} = Eigensystem[A]

-−2, -−
4

5
, {2, 1}, 

5

4
, 1

which I can then decimalize
NumberForm[N[{vals, vecs}], 3]

{{-−2., -−0.8}, {{2., 1.}, {1.25, 1.}}}

Scooping up at a later stage in the example, there will be two equations for the two circuit 
loops. 

I1 = 2 c1 ⅇ-−2 t + c2 ⅇ-−0.8 t + 3 and I2 = c1 ⅇ-−2 t + 0.8 c2 ⅇ-−0.8 t

For the case where t=0, the example, at top of p. 134, states these as

I1[0] = 2 c1 + c2 + 3 = 0 and I2[0] = c1 + 0.8 c2 = -−3

The alteration, from example 2, for this problem is that at t=0 the two current values are 0 
and -3 Amp respectively, so the above equations can be solved by
Solve[2 c1 + c2 + 3 ⩵ 0 && c1 + 0.8 c2 ⩵ -−3, {c1, c2}]

{{c1 → 1., c2 → -−5.}}

Then I will have

I1[t] = 2 c1 ⅇ-−2 t + c2 ⅇ-−0.8 t + 3  /∕.
{c1 → 0.9999999999999997`, c2 → -−4.999999999999999`}

3 + 2. ⅇ-−2 t -− 5. ⅇ-−0.8 t

and
I2[t] = c1 ⅇ-−2 t + 0.8 c2 ⅇ-−0.8 t /∕.

{c1 → 0.9999999999999997`, c2 → -−4.999999999999999`}

1. ⅇ-−2 t -− 4. ⅇ-−0.8 t

The text answer only encompasses the constant values in green above, not the actual result-
ing current equations.

9. If the initial currents in example 2 are 28 A and 14 A.

The use of example 2 on p. 132 is not finished, there is this additional problem concerning 
it. Using the last problem, and jumping down to the pertinent expressions
Solve[2 c1 + c2 + 3 ⩵ 28 && c1 + 0.8 c2 ⩵ 14, {c1, c2}]

{{c1 → 10., c2 → 5.}}

The above green cell matches the text answer. The text answer skips the final equations, so 
I will also.
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The above green cell matches the text answer. The text answer skips the final equations, so 
I will also.

10 - 13 Conversion to systems
Find a general solution of the given ODE (a) by first converting it to a system, (b), as 
given. 

11.  4 y'' - 15 y' - 4 y = 0

(a) Convert to a system. Conversion to a system seems like it would be useful in some 
cases. However, as long as DSolve can get it done without such conversion, it is a little 
difficult to get motivated about it.

(b) As given
eqn = 4 y''[x] -− 15 y'[x] -− 4 y[x] ⩵ 0

-−4 y[x] -− 15 y′[x] + 4 y′′[x] ⩵ 0

sol = DSolve[eqn, y, x]

y → Function{x}, ⅇ-−x/∕4 C[1] + ⅇ4 x C[2]

eqn /∕. sol /∕/∕ Simplify

{True}

The answer in yellow above is correct, but not listed in the text answer. Instead, the text 
answer includes a vector of constants, which I think are ultimately absorbed by the con-
stants shown above.

13.  y'' + 2 y' - 24 y = 0

ClearAll["Global`*⋆"]

(b) As given
eqn = y''[x] + 2 y'[x] -− 24 y[x] ⩵ 0

-−24 y[x] + 2 y′[x] + y′′[x] ⩵ 0

sol = DSolve[eqn, y, x]

y → Function{x}, ⅇ-−6 x C[1] + ⅇ4 x C[2]

eqn /∕. sol /∕/∕ Simplify

{True}

The answer in green above matches the answer in the text.

15. CAS experiment. Electrical network.
(a) In Example 2, p. 132, choose a sequence of values of C that increases beyond bound, 
and compare the corresponding sequences of eigenvalues of A. What limits of these 
sequences do your numeric values (approximately) suggest?
(b) Find these limits analytically.
(c) Explain your result physically.
(d) Below what value (approximately) must you decrease C to get vibrations?
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